

NASA’s Software Security
Vulnerabilities Found For Fun, Not
Profit
How to discover more than dozen severe and critical security
vulnerabilities in various NASA’s in house developed software in only 4
hours

Leon Juranic (leon.juranic@threatleap.com)
Published: 05/27/2025

Long time ago in a galaxy far, far away…

Long time ago, in a galaxy far, far away, fifteen years ago (in 2009), I was a 25 year
old hacker and cofounder of my first cybersecurity startup Infigo and just finished a
one year long side project security research collaboration with NASA Goddard
Space Flight Center. During the security research I discovered 12 dangerous
security vulnerabilities in Common Data Format (CDF) software library (some of
them critical severity).
NASA’s CDF software library (https://cdf.gsfc.nasa.gov/) is according to its
documentation developed and used by NASA and hundreds other government
agencies, academic community and various organizations for the purpose (in very
simple words) - of tracking objects locations in space.

When checking how widely CDF is used we can find detailed information in their
FAQ section page.
https://cdf.gsfc.nasa.gov/html/faq.html

6. How widely used is CDF?

The CDF software package is used by hundreds of government agencies,
universities, and private and commercial organizations as well as
independent researchers on both national and international levels.
CDF has been adopted by the International Solar-Terrestrial Physics
(ISTP) project as well as the Central Data Handling Facilities
(CDHF) as their format of choice for storing and distributing key
parameter data.

mailto:leon.juranic@gmail.com
https://cdf.gsfc.nasa.gov/
https://cdf.gsfc.nasa.gov/html/faq.html

CDF software is open source and available for anyone to download and use from
NASA’s website. Long time ago in 2009 I downloaded the CDF library and started to
look around for security vulnerabilities in it.

Since it is written in C, back then in 2009, I was mostly looking for memory corruption
vulnerabilities, most interesting and most dangerous vulnerabilities.
Combination of fuzzing and manual source code review resulted in total of 12
security vulnerabilities and at least 3 of them critical memory corruption / remote
code execution, all of which I reported to NASA’s CDF software developers and also
wrote an exploit for one of the remote code execution vulnerabilities, just as Proof Of
Concept.

This collaboration started with a single security vulnerability reported to NASA’s CDF
team and afterwards extended with more fuzzing and source code audit which I did.
More vulnerabilities started popping up. Reporting them, verifying NASA’s CDF
developer’s fixes for the reported vulnerabilities, confirmed fixes or suggested
improvements, collaboration which lasted over one year and resulted in a total of 12
security vulnerabilities which were fixed.

In the end it resulted in a much more fortified and secure NASA’s CDF software
library and after all the fixes were implemented on their side, in coordination with
NASA’s CDF team with responsible full disclosure, I published a security advisory
about CDF security vulnerabilities, covering in detail one of the discovered critical
security vulnerabilities and briefly mentioning some other vulnerabilities.
Security advisory was published on Bugtraq mailing list -
https://seclists.org/bugtraq/2009/Jul/142 .

For the record, I still miss Bugtraq :-(even though in its final years it was far away
from what it was during its golden years.

I recall that NASA’s CDF developers were very friendly and cooperative when I was
approaching and helping them to fortify the CDF software library.
I even acknowledged their collaboration efforts in previously mentioned security
advisory published in July of 2009:
“We would like to thank the whole NASA CDF team, and especially Michael Liu
for cooperation, and good work in dealing with reported vulnerabilities.”
And NASA’s CDF team also acknowledged my contributions to the CDF software
security:
https://cdf.gsfc.nasa.gov/html/acknowledgements.html :
“The CDF team greatly appreciates the efforts of Mr. Leon Juranic, from Infigo
Information Security http://www.infigo.hr , for reporting and testing the vulnerability in
our code.”

https://seclists.org/bugtraq/2009/Jul/142
https://cdf.gsfc.nasa.gov/html/acknowledgements.html

In The Meantime

Not long after publishing the previously mentioned NASA CDF security advisory in
2009, I parted ways with my first co-founded cybersecurity startup Infigo in order to
start my next cybersecurity startup DefenseCode. Dedicated to building
state-of-the-art SAST and DAST automated software tools.

During the following 12 years, I was - all around the clock - focused and dedicated to
developing state-of-the-art SAST and DAST automated tools in DefenseCode.
Since there was, back then, a serious trend in going to “shift-left” and automated
SAST and DAST tools along with software security overall and especially web
applications becoming more and more popular, I saw my chance and place there.

Following that, there were 12 years during which I coded more than 18 Megabytes of
raw source code for Static Application Security Testing software of full blown
taint/data flow SAST analysis engines with thousands purely security-based rules for
Java, C#, Python, Ruby, PHP, JavaScript, Groovy, PL/SQL, Golang, C/C++, VB.Net,
ASP Classic, VBScript, Android Java, Objective-C, ColdFusion, Cobol, ABAP, Swift,
Xamarin, Kotlin, R, Salesforce APEX and Visual Basic.

Beside SAST, there was also a DAST tool which I’ve developed, with support for
classic web but also latest web technologies, like Web 2.0, HTML 5, etc. with usually
more than 200-300 different security tests with advanced heuristics per single web
application or API parameter/argument/header/path for mostly all of the
vulnerabilities which could be found via DAST approach.

Even though we were a relatively small but high performing company, we also had
Fortune 100 logos on our clients list.

So you could definitely say I paid my dues to Application Security.

Three years ago my Application Security SAST and DAST startup DefenseCode was
acquired by a global AppSec leader/vendor in 2022.

Ok, so why are you writing this SAST/DAST stuff? Who cares about your AppSec
journey?

Simply to point out that I know a thing or two about AppSec :)

Nowadays, my daily focus is on a new startup ThreatLeap
(https://www.threatleap.com/) where I’m fully engaged in the position of technical and
business advisor. ThreatLeap is an all around proactive security monitoring SaaS
solution for organizations digital security posture and digital footprint with mission of
discovering threats and vulnerabilities of different kinds and types in a proactive
manner in order for organizations to stay one step ahead of threat actors.

https://www.threatleap.com/

Now, let’s get back to NASA

Three months ago during the still of the night, I got bored listening to music, didn’t
feel like taking a guitar in my hands. Instead I did what I used to do a long time ago,
but much more rarely nowadays, I downloaded some software from Github and
started to look for security vulnerabilities in it, purely by accident it was related to
NASA again.

Actually not developed by NASA, but software which was mentioned by NASA -
NetCDF, written in C++ and originating in the academic community, IIRC.

After quick googling, it turned out that NetCDF software was fuzzed to death by
OSS-Fuzz, Google backed project - https://nvd.nist.gov/vuln/detail/CVE-2019-25050
.
Decision was quick - I gave up. :) It’s important to know how to choose your battles.
I’m looking for something with low hanging fruits (vulnerabilities which are easier to
find but of a high/critical risk) because I’m doing it for fun, not looking into something
stressed out to death by Google backed fuzzing.

I’m not as eager as I was 15 years ago to spend a year looking for vulnerabilities in
something that I probably won't even get paid for, even though I’m doing it for fun this
time. :)

During the 15 years from 2009 till 2024 there was an enormous change and shift in
what hackers are mostly looking for and exploiting these days. Along with “good old
pals”, brand new classes of security vulnerabilities and adversary techniques
emerged during those 15 years. Technology has advanced significantly and the
security posture of companies and organizations is much more different these days
than what it was a decade and half ago.

So, Instead of beating the dead horse - NetCDF, I turned to NASA’s public software
repositories published on Github under NASA’s official account
(https://github.com/NASA) which was referenced from https://code.nasa.gov/ and
https://software.nasa.gov/ .
Software developed by NASA and used by NASA and anyone else who cloned or
forked these repositories from NASA’s Github account.

In the first run, I’ve downloaded roughly 10 NASA’s applications and started to
manually check the source code for security vulnerabilities. Just as an empirical test
to see how long it will take me to potentially find some (if any) vulnerability in NASA’s
software published on Github, 15 years later after the NASA CDF research,
whatever vulnerability it could be.

https://nvd.nist.gov/vuln/detail/CVE-2019-25050
https://github.com/NASA
https://code.nasa.gov/
https://software.nasa.gov/

I’ve set a time limit of two hours of code audit and as you can guess, in the beginning
I was focused mostly on web applications, with a slight twist at the half of the
analysis process, when I decided to invest two more hours into auditing NASA’s
software written in C/C++ :)

I used a combination of manual source code review and quick pure grep-ing for stuff
which I know that could be security questionable in some given technology stack.

At the web site https://code.nasa.gov/ there is a catalog of a NASA’s software with a
reference to an official GitHub repository (https://github.com/nasa/) and description
of NASA’s Open Source Software which was approved to be published online on the
NASA’s GitHub account.

Before publishing source code on GitHub, NASA’s source code has to get approval
by NASA’s SRA (Software Release Authority) at https://softwarerelease.ndc.nasa.gov/ .
The whole process is described on the following URL: https://code.nasa.gov/#/guide .
So I started to look into NASA's software referenced from https://code.nasa.gov/ and
published on GitHub.

Some of these software applications which I audited are older than me. NASA often
uses the same in house developed software over many decades, like for example
Voyager space probe which was sent to space in 1977 is still, to this very day, based
and operated on FORTRAN and (allegedly) assembler.

What I discovered in the end were vulnerabilities of various classes and types,
ranging from Cross Site Scripting and Secrets Leaks to Buffer Overflows.
You can find more details about my vulnerability findings below, chronologically as I
discovered them, not necessarily sorted by severity and/or risk/criticality level.

https://code.nasa.gov/
https://github.com/nasa/
https://softwarerelease.ndc.nasa.gov/
https://code.nasa.gov/#/guide
https://code.nasa.gov/

NASA’s GeoRef Software - Reflected Cross Site
Scripting Security Vulnerability

After quickly checking couple of NASA’s applications, soon I stumbled across
NASA’s GeoRef software

So, what is it all about?
Taken from the NASA’s web page (https://software.nasa.gov/software/ARC-17943-1):

“GeoRef is a Web-based software application designed to increase the efficiency
and precision in geo-locating photographs taken by astronauts from the International
Space Station. GeoRef provides highly automated processes for: (1) calculating the
latitude and longitude coordinates of the center point of the image, and (2) producing
geo-referenced map overlays for the image. The georeferenced images produced by
GeoRef are designed to support the needs of educational, Earth science, and
disaster response users.”

Download link for GeoRef v1 software from:
https://software.nasa.gov/software/ARC-17943-1

-​ is pointing to NASA’s Github account, here:
https://github.com/nasa/georef

NASA’s GeoRef software is mostly written in Python and HTML.

So I downloaded software from Github and the first thing which I did was to search
for common Python pitfalls.
Looking through the source code and grep-ing stuff. Nothing more but VIM and grep,
party like it's the 80's :)

It took me 30 minutes to find this interesting piece of the source code.
https://github.com/nasa/georef/blob/main/apps/georefApp/templates/registration/regi
ster.html#L41

https://software.nasa.gov/software/ARC-17943-1
https://software.nasa.gov/software/ARC-17943-1
https://github.com/nasa/georef
https://github.com/nasa/georef/blob/main/apps/georefApp/templates/registration/register.html#L41
https://github.com/nasa/georef/blob/main/apps/georefApp/templates/registration/register.html#L41

Line 41 of template file register.html contains this interesting piece of the source
code:

 <input type="hidden" name="next" value="{% if request.REQUEST.next %}{{
request.REQUEST.next|safe }}{% else %}{% url home %}{% endif %}">

So, in the end, it took me 30 minutes of overall time spent on a few NASA’s
applications to find a Reflected Cross Site Scripting security vulnerability in NASA’s
GeoRef v1 software purely by manual inspection.

Previous source code line will check if HTTP GET/POST request parameter “next” is
set and if it is, it will place it in a Jinja or Django template response with one very
important markup - JavaScript/HTML - “|safe”.​

Someone would maybe assume that this “|safe” markup is making this code secure,
but it’s quite the opposite, sometimes technical things can be quite misleading and
non/counter intuitive.

This peculiar little “|safe” thing will automatically disable any Python (by default
enabled) Cross Site Scripting vulnerability prevention measures and protections and
allow any dangerous HTML characters to be reflected in the server’s response, since
the Python templating engine is declaring tainted user input parameter named “next”
as Cross Site Scripting concerns - Safe.

What it means - it means that it is possible to set the GET/POST parameter “next” to
a variation of “><script>alert(1)</script><” and it will be reflected exactly as it is and
execute given JavaScript alert(1).

Of course, nowadays it depends on the client’s browser environment and settings,
but in cases when the client's browser doesn’t have Reflected XSS protection in
place, alert(1) window will popup.
Even with client’s browser protection for JavaScript, HTML code will still go through
without a problem, so it is a classic Reflected Cross Site Scripting.

Since this is a register.html template used to register accounts which probably
doesn’t require any form of prior authentication, these sorts of Cross Site Scripting
vulnerabilities are usually classified as High Severity Reflected Cross Site Scripting
vulnerabilities.

Moreover, when I searched Github for a code sample which is the root cause of this
Cross Site Scripting vulnerability in GeoRef software, I’ve found this vulnerable code
line in 5 more repositories/locations (probably somehow related to NASA’s GeoRef
software but didn’t do more research on it).

https://github.com/geocam/geocamMapFasten/blob/faa8f0c963a76cd72d0e694385e
0e58e35b6500e/apps/mapFastenApp/templates/registration/register.html

https://github.com/geocam/geocamResponderMaps/blob/19a87410bc0887b8c01ae5
65a6ab15f2e2a7c26e/apps/responderMaps/templates/registration/register.html

https://github.com/ep-infosec/28_nasa_georef/blob/0d3e722d66eb721449d0133e47
2826e97130dc63/apps/georefApp/templates/registration/register.html

https://github.com/afcarl/georef/blob/25d3e7ae6dd3ea2a40e8ecd7c74d1a86b9404e
54/apps/georefApp/templates/registration/register.html

https://github.com/geocam/geocamResponderMaps/blob/19a87410bc0887b8c01ae5
65a6ab15f2e2a7c26e/apps/responderMaps/templates/landing/index.html

https://github.com/geocam/geocamMapFasten/blob/faa8f0c963a76cd72d0e694385e0e58e35b6500e/apps/mapFastenApp/templates/registration/register.html
https://github.com/geocam/geocamMapFasten/blob/faa8f0c963a76cd72d0e694385e0e58e35b6500e/apps/mapFastenApp/templates/registration/register.html
https://github.com/geocam/geocamResponderMaps/blob/19a87410bc0887b8c01ae565a6ab15f2e2a7c26e/apps/responderMaps/templates/registration/register.html
https://github.com/geocam/geocamResponderMaps/blob/19a87410bc0887b8c01ae565a6ab15f2e2a7c26e/apps/responderMaps/templates/registration/register.html
https://github.com/ep-infosec/28_nasa_georef/blob/0d3e722d66eb721449d0133e472826e97130dc63/apps/georefApp/templates/registration/register.html
https://github.com/ep-infosec/28_nasa_georef/blob/0d3e722d66eb721449d0133e472826e97130dc63/apps/georefApp/templates/registration/register.html
https://github.com/afcarl/georef/blob/25d3e7ae6dd3ea2a40e8ecd7c74d1a86b9404e54/apps/georefApp/templates/registration/register.html
https://github.com/afcarl/georef/blob/25d3e7ae6dd3ea2a40e8ecd7c74d1a86b9404e54/apps/georefApp/templates/registration/register.html
https://github.com/geocam/geocamResponderMaps/blob/19a87410bc0887b8c01ae565a6ab15f2e2a7c26e/apps/responderMaps/templates/landing/index.html
https://github.com/geocam/geocamResponderMaps/blob/19a87410bc0887b8c01ae565a6ab15f2e2a7c26e/apps/responderMaps/templates/landing/index.html

NASA’s CMR-OpenSearch - “Secrets Leak”
Software Security Issue

After checking a few more software applications from NASA’s Github repositories,
I’ve stumbled across another interesting https://github.com/nasa/cmr-opensearch/
repository - CMR-OpenSearch application.

As described on the Github page:
“CMR-OpenSearch is a web application developed by NASA EOSDIS to enable data
discovery, search, and access across the CMR Earth Science data holdings via the
OpenSearch standard.”

NASA’s CMR-OpenSearch software is mostly written in Ruby:

Again, with VIM and grep I’ve looked the old-fashioned way for common Ruby
applications pitfalls that could endanger the security of this software or NASA’s
systems and organizations using this software.

Pretty quickly I’ve stumbled across this file:
https://github.com/nasa/cmr-opensearch/blob/master/config/initializers/secret_token.r
b#L10

https://github.com/nasa/cmr-opensearch/
https://github.com/nasa/cmr-opensearch/blob/master/config/initializers/secret_token.rb#L10
https://github.com/nasa/cmr-opensearch/blob/master/config/initializers/secret_token.rb#L10

It took me only about 10 minutes of auditing this application before stumbling across
a security issue/data/secret leak.

On line 10 of secret_token.rb we can see secret_key_base value is hardcoded in
Ruby code and publicly disclosed in the application’s Github repository. It’s unclear if
this is secret_key_base used by NASA, their software developers or their
contractors, but these kinds of vulnerabilities are classified as “Secrets Leaks”.

Your secret key for verifying the integrity of signed cookies.
If you change this key, all old signed cookies will become invalid!
Make sure the secret is at least 30 characters and all random,
no regular words or you'll be exposed to dictionary attacks.
EchoOpensearch::Application.config.secret_key_base =
'69178fcac03379251a9b3a0a75c237a5960cb3cce6746477988199eb2cc9be01720a
50d3d12121dc3367359a4eb7e56feb3b44033f3609c8bdb61ae830b4206f'

It doesn’t say without a reason in the comments above the hardcoded key - “Your
secret key”. It is supposed to be secret, not publicly available on Github.

Public “secrets leaks” security issues became mostly popular with the rise of Github,
and it happens when developers or companies/organizations publish their source
code along with (accidentally) publishing hardcoded sensitive/secret key values
publicly on Github, usually without intention of doing so, for anyone to see it.

“secret_key_base” token is used for session encryption, message verifiers,
password resets and signed/encrypted cookies.

Leaked secret_key_base tokens values can be used for session hijacking, tampering
session cookies, password reset token exploits, encrypted data breaches and replay
attacks.

If secret_key_base is not changed in the production and it doesn't have to be,
especially since it is hardcoded in the Ruby code and also publicly disclosed, it can
pose a significant danger to every system which is using these applications, both
NASA and other organizations using this software.

Danger of leaked sensitive Ruby secret_key_base key can be found explained in
details in the following link:
https://www.gitguardian.com/remediation/rails-secret-key-base

https://www.gitguardian.com/remediation/rails-secret-key-base

NASA’s CMR-CSW Software - “Secrets Leak”
Security Issue

Since there was another NASA’s Ruby application which I’ve downloaded,
CMR-CSW https://github.com/nasa/cmr-csw/ I’ve looked for similar problems as in
the previous Ruby application.

Description from the Github:
“CMR-CSW is a web application developed by NASA EOSDIS to enable data
discovery, search, and access across the CMR Earth Science data holdings via the
OpenGIS Catalogue Service for the Web (CSW) standard.”

Again, mostly Ruby language.

Quick search for hardcoded keys again resulted in an interesting discovery.
https://github.com/nasa/cmr-csw/blob/master/config/initializers/secret_token.rb#L7

https://github.com/nasa/cmr-csw/
https://github.com/nasa/cmr-csw/blob/master/config/initializers/secret_token.rb#L7

On line 7 of secret_token.rb there is again hardcoded secret_key_base value:

Your secret key for verifying the integrity of signed cookies.
If you change this key, all old signed cookies will become invalid!
Make sure the secret is at least 30 characters and all random,
no regular words or you'll be exposed to dictionary attacks.
Csw::Application.config.secret_key_base =
'2bef5ecf97256763b1e8c9b45d27c1503128a08d7bbf8835c0241cbce80b40df624b7f
a391f3ae403d37538c29d6c83c1adfeb6803926435abd12cafa13a211a'

Another “Secrets Leaks” security issue/data leak of secret_key_base value, same as
in previous case.

Same principles and security implications applies to this one as to previous issue:
https://www.gitguardian.com/remediation/rails-secret-key-base

https://www.gitguardian.com/remediation/rails-secret-key-base

NASA’s Portable Environment for Quick Image
Processing (QuIP) Remote Buffer Overflow

Since I’ve decided to invest an additional two hours in NASA’s GitHub software audit,
I’ve started to look for C/C++ applications and memory corruption issues.

I’ve stumbled across https://github.com/nasa/QuIP repository which is Portable
Environment for Quick Image Processing (QuIP). Image data parsing and processing
overall can be quite complicated and challenging and has a long history of memory
corruption issues in all sorts of platforms, software, libraries and Operating Systems,
so I started to dig.

QuIP software as described on https://software.nasa.gov/software/ARC-16295-1A or
https://code.nasa.gov/ :
“The QuIP interpreter, a software environment for QUick image processing, uses an
interactive scripting language designed to facilitate use by non-expert users, through
features such as context-sensitive automatic response completion and integrated
documentation. The package includes a number of script packages that implement
high-, medium-, and low-level functions (e.g., analysis of eye images for human gaze
tracking, feature tracking, and image filtering). The environment also includes
facilities for displaying images on screen, drawing and overlaying graphics, and
constructing graphical user interfaces using the scripting language. Currently
supported platforms are *NIX (tested on Mac OS X and Linux), and Apple iOS.”

QuIP software is mostly written in C language:

https://github.com/nasa/QuIP
https://software.nasa.gov/software/ARC-16295-1A
https://code.nasa.gov/

So I’ve started to look for some stack buffers and inherently insecure C/C++
functions and memory operations. It took me about 45 minutes of grepping and
manual review to stumble across an interesting code construct.

I’ve stumbled across HIPS file format processing code. Since I’ve never heard of
HIPS / HIPS2 file format I’ve asked ChatGPT what it stands for and here is
ChatGPT’s answer:

When I checked the source code, yes, it looks like ChatGPT was right.

File https://github.com/nasa/QuIP/blob/master/libsrc/hips/readhdr.c was reading
HIPS file header from the file with pointer to FILE structure of previously opened
HIPS/HIPS2 file.

https://github.com/nasa/QuIP/blob/master/libsrc/hips/readhdr.c

On line 34, we can see rd_hips2_hdr() function

int rd_hips2_hdr(FILE *fp,Hips2_Header *hd,const Filename fname)

In the beginning of the file header processing we can see some common operations
like reading the file header, reading of various data, and it’s all stored in a buffer on
stack ‘char inp[LINELENGTH]’ and in various variables in data structure
Hips2_Header.
We can also see the ‘char ptypes[20]’ buffer also declared on stack, which we will
come back to again later.
From a quick overview, everything seems safe so far.

Code is using a custom hfgets() function which is actually a wrapper around a “safe”
fgets() function which has boundary limits when reading from file into a buffer, so
everything is fine so far.

inp buffer LINELENGTH is defined in file:

https://github.com/nasa/QuIP/blob/master/include/hips/hip2hdr.h#L88

#define LINELENGTH 400​

Some things in HIPS2 header code reading data potentially (fleeting glimpse) looks
like integer overflows but hey, I have a limited time span of only 2 hours :)

But things gets interesting when going little bit below initial header data reading:
https://github.com/nasa/QuIP/blob/master/libsrc/hips/readhdr.c#L125

On line 125 of file readhdr.c
(https://github.com/nasa/QuIP/blob/master/libsrc/hips/readhdr.c#L125) we can see
plain simple, inherently insecure fscanf() function reading data with %s format strings
into previously mentioned buffers on stack ‘inp’ and ‘ptypes’ and extpar struct ‘count’
variable.

if (fscanf(fp,"%s %s %d",inp,ptypes,&(xp->count)) != 3)

https://github.com/nasa/QuIP/blob/master/include/hips/hip2hdr.h#L88
https://github.com/nasa/QuIP/blob/master/libsrc/hips/readhdr.c#L125
https://github.com/nasa/QuIP/blob/master/libsrc/hips/readhdr.c#L125

That means that this fscanf() function will read as much data as it can from file into
‘inp’ and ‘ptypes’ buffers, before it stumbles across blank space or newline character,
without respecting any (inp or ptypes) destination buffers memory boundaries.

What we see here is plain old, straight from a textbook, vanilla stack based
buffer overflow.

$ python3 -c 'print ("%s %s %d" % ("A" * 1000, "B" * 50, 10))'
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
BB 10

This line in the correctly formatted HIPS2 file (HIPS2 file header should be correct)
which will pass the initial checks will overflow both ‘inp’ and ‘ptypes’ buffers on stack
causing stack based buffer overflow.

If a malicious HIPS2 file comes from an untrusted source as in over an email or
from the web, QuIP software can potentially be exploited to achieve stack
based buffer overflow and consequently remote arbitrary code execution when
processing a malformed and malicious HIPS2 file.

What is interesting, QuIP software has been in development by NASA for roughly
four decades. The development started even before I was born :) Something like The
Rolling Stones would say, but a little bit different - Pleased to meet you, hope you
guess my age :)

Just out of curiosity, when asking ChatGPT if NASA’s QuIP software is still in use
nowadays, this is the response:

Conclusion - I have strong feelings that there are more vulnerabilities in QuIP
software than just this one described, but as stated, I’ve limited my total overall time
focus to two hours to see what I can find in NASA’s repos in such a short time period.

NASA’s Vehicle Sketch Pad (VSP) Remote Buffer
Overflow

After finding basic vanilla stack buffer overflow in file processing in the previous
example I was curious if there are any other similar cases, so I searched NASA’s
GitHub account for similar cases of file processing operations with insecure fscanf()
functions.
Main motive and reasoning behind that was that all over different NASA's code in
GitHub repositories there is a whole bunch of NASA’s specific file formats
processing, and maliciously constructed data files can easily be slipped to the
victim over an email or over the web. Along with the fact that inherently insecure
fscanf() with %s format string is a 90% probability security failure.

I quickly stumbled across NASA’s Vehicle Sketch Pad (VSP) code repository:
https://github.com/nasa/OpenVSP/

As described on https://code.nasa.gov/ :
“The Vehicle Sketch Pad (VSP) is an aircraft geometry tool for rapid evaluation of
advanced design concepts. Fast and accurate geometry modeling allows the
designer to use more complex analysis methods earlier in the design process and
reduces reliance on empiricism in conceptual design. VSP includes tools to model
and export the internal structural layout.”

OpenVSP is mostly written in C and C++ languages.

After a five minute looking around the code, I quickly stumbled across another stack based
buffer overflow in processing files, similar to previously described.
In following file https://github.com/nasa/OpenVSP/blob/master/src/vsp/vorGeom.cpp#L114
there is a read_file() method/function declared which reads a file and processes its content.

https://github.com/nasa/OpenVSP/
https://code.nasa.gov/
https://github.com/nasa/OpenVSP/blob/master/src/vsp/vorGeom.cpp#L114

Again, we can see a stack buffer on line 121, named ‘str’ declared as ‘char str[256]’
which is later used on code line 129 in file vorGeom.cpp -
https://github.com/nasa/OpenVSP/blob/master/src/vsp/vorGeom.cpp#L129 as
destination buffer for fscanf() function reading the file data without checking any
buffer boundaries.

while (fscanf(fp, "%s", str) != EOF)

When looking around the code calling read_file() it seems that these files are
expected to have “.cas” file extension.
If .cas file has a data line longer than 256 characters it will overflow the ‘str’ buffer
causing another vanilla stack based buffer overflow.

If a malicious CAS file comes from an untrusted source as in over an email or
from the web, OpenVSP software can potentially be exploited to achieve stack
based buffer overflow and consequently remote arbitrary code execution when
processing a malformed and malicious CAS file. ​

Apparently, there is a notice in a previous repository on GitHub which I didn’t see
before - “This repository has been archived by the owner on Sep 8, 2018. It is now read-only.”

https://github.com/nasa/OpenVSP/blob/master/src/vsp/vorGeom.cpp#L129

However it says that https://openvsp.org/ is now the official place for new versions of
OpenVSP. Little bit of a look around it. Ok, source code link is pointing to another
GitHub repository: https://github.com/OpenVSP/OpenVSP

Codebase seems to be updated recently and it took me exactly 1 minute to find
another fscanf() stack based buffer overflow in the file processing code.
In file
https://github.com/OpenVSP/OpenVSP/blob/main/src/geom_core/Vehicle.cpp#L5515
on line 5515, there is again vanilla stack based buffer overflow when reading from
file data into ‘char str[256]’ stack buffer, causing again buffer overflow.

fscanf(fp, "%s INPUT FILE\n\n", str);

If a malicious file comes from an untrusted source as in over an email or from
the web, latest OpenVSP software can potentially be exploited to achieve stack
based buffer overflow and consequently remote arbitrary code execution when
processing a malformed and malicious file.

https://openvsp.org/
https://github.com/OpenVSP/OpenVSP
https://github.com/OpenVSP/OpenVSP/blob/main/src/geom_core/Vehicle.cpp#L5515

When asking ChatGPT if NASA’s OpenVSP software is still in use, here is ChatGPT’s
response:

NASA’s Regional Hydrologic Extremes
Assessment System (RHEAS) Software
Framework Remote Buffer Overflow

Looking, searching and grepping for more fscanf() stack based buffer overflows I’ve
stumbled across NASA’s RHEAS software framework -
https://github.com/nasa/RHEAS/ .

RHEAS software as described on https://code.nasa.gov/ :
“Automates the deployment of nowcasting and forecasting hydrologic simulations
and ingests satellite observations (through data assimilation). Allows coupling of
other environmental models. Also facilitates delivery of data products to users via a
GIS-enabled database. users of project outputs through CCAFS network of partners.
Our project objectives, and approach are integral with the goals of SERVIR.”​

Long story short, another fscanf() stack based buffer overflow from file data.
https://github.com/nasa/RHEAS/blob/master/external/VIC/src/read_veglib.c#L52

On line 52 of read_veglib.c file we can see following code:
 fscanf(veglib, "%s", str);

Buffer ‘str’ is declared on stack as ‘char str[MAXSTRING]’, while MAXSTRING is
defined as:
src/vicNl_def.h: #define MAXSTRING 2048

https://github.com/nasa/RHEAS/
https://code.nasa.gov/
https://github.com/nasa/RHEAS/blob/master/external/VIC/src/read_veglib.c#L52

String in a VegLib data file longer than 2048 bytes will overflow the ‘str’ buffer while
reading the file, causing stack based buffer overflow.

Asking ChatGPT what is VegLib file format, here is ChatGPT’s response:

If a malicious VegLib file comes from an untrusted source as in over an email
or from the web, RHEAS software can potentially be exploited to achieve stack
based buffer overflow and consequently remote arbitrary code execution when
processing a malformed and malicious VegLib file.

More Buffer Overflow Vulnerabilities in NASA’s
Software

Quick GitHub code search of NASA’s official account on GitHub resulted in 8 more
potential buffer overflows in NASA’s file processing software with an inherently
insecure use of fscanf() function. To keep this article sane in terms of its length, I will
just list them here, with GitHub repo, brief info and vulnerable code snippets. I’ll
leave detailed analysis as an exercise for a curious reader. :)

Software: Omnias Stack Based Buffer Overflow
Description: Opensource Multi-INstrument Analysis Software
Repository: https://github.com/nasa/ominas/
Vulnerable file and lines:
https://github.com/nasa/ominas/blob/master/config/spice/ckcat.c#L58
https://github.com/nasa/ominas/blob/master/config/spice/ckcat.c#L69

https://github.com/nasa/ominas/
https://github.com/nasa/ominas/blob/master/config/spice/ckcat.c#L58
https://github.com/nasa/ominas/blob/3eaefabacecc477c62b417abf63dd93835ee1031/config/spice/ckcat.c#L69

Software: Refine Stack Based Buffer Overflows
Description: N/A
Repository: https://github.com/nasa/refine/
Vulnerable files and lines:
https://github.com/nasa/refine/blob/master/src/ref_meshlink.c#L126

https://github.com/nasa/refine/blob/master/src/ref_part.c#L2123

https://github.com/nasa/refine/
https://github.com/nasa/refine/blob/master/src/ref_meshlink.c#L126
https://github.com/nasa/refine/blob/master/src/ref_part.c#L2123

Software: CFDTools Stack Based Buffer Overflow
Description: N/A
Repository: https://github.com/nasa/cfdtools/
Vulnerable file and line:
https://github.com/nasa/cfdtools/blob/develop/lib/lewis/grant.c#L60

Software: Knife Stack Based Buffer Overflow
Description: N/A
Repository: https://github.com/nasa/knife/
Vulnerable file and line:
https://github.com/nasa/knife/blob/master/src/knife_fortran.c#L161

There are two more similar buffer overflows in the same file:
https://github.com/nasa/knife/blob/master/src/knife_fortran.c#L179
https://github.com/nasa/knife/blob/master/src/knife_fortran.c#L216
Just a quick note after this list, I’m pretty sure that during the analysis I’ve also seen one
heap based buffer overflow, but I apparently lost it in my notes :)

https://github.com/nasa/cfdtools/
https://github.com/nasa/cfdtools/blob/develop/lib/lewis/grant.c#L60
https://github.com/nasa/knife/
https://github.com/nasa/knife/blob/master/src/knife_fortran.c#L161
https://github.com/nasa/knife/blob/master/src/knife_fortran.c#L179
https://github.com/nasa/knife/blob/master/src/knife_fortran.c#L216

Conclusion
I’ve spent 2 hours in total doing a brief manual audit of 10 randomly picked NASA’s
software applications and later 2 additional hours in 20 more applications (from quick
Github code patterns search, grepping and manual review). All of them taken from
NASA’s official Github account and repositories, 4 hours during which I’ve discovered
numerous (around 15) interesting findings which I (to be honest) didn’t expect to
discover in such a short time period.

To my surprise, if my little NASA’s manual source code security audit exercise
spanning only over 4 hours timespan resulted in numerous potentially serious
security vulnerabilities, imagine how many more security issues can be found in the
same software or other NASA’s software by malicious adversaries with virtually
unlimited budgets.
Some like foreign nation’s sponsored threat actors looking for their nefarious way
into NASA’s systems or other Government/Tech/Research/Academics systems using
vulnerable software available for anyone from NASA’s GitHub account.

Just as precaution, as I did all of the security research over multiple codebases in a
total of a strict ~4 hours, forgive me if I made some mistake, which I would attribute
to a maximum of 5% of overall research content presented in this paper.

As of the beginning of a last year (2024), there was a great initiative coming from a
USA WhiteHouse which urges tech companies to switch to memory safe
programming languages:
https://www.bleepingcomputer.com/news/security/white-house-urges-devs-to-switch-
to-memory-safe-programming-languages/

According to Microsoft, ~70% of software security vulnerabilities stem from software
written in memory unsafe languages like C/C++ which usually involves some sort of
memory corruption vulnerabilities and the WhiteHouse initiative is a step in the right
direction. Switching to memory safe languages like Rust, Go, Java, C#, etc.
Nowadays in the days of modern computing, that can be achieved with a minimum
performance tradeoff, and less and less as each year and technological advances
come by.

Since I always report security vulnerabilities which I discover in a responsible
disclosure manner to the vendors, I’ve contacted NASA dozen times over an e-mail
(all which I could find related to the software), along with an official security contact -
soc@nasa.gov email and telephone to report these issues, but I received no
feedback over an email, only a short sentence over the phone.

https://www.bleepingcomputer.com/news/security/white-house-urges-devs-to-switch-to-memory-safe-programming-languages/
https://www.bleepingcomputer.com/news/security/white-house-urges-devs-to-switch-to-memory-safe-programming-languages/
mailto:soc@nasa.gov

What I got over NASA's SOC phone number was only that I was asked if I was their
employee (and I said - no), and the conclusion was that their policy is that they don’t
reply to security vulnerability reports - at all.

I don’t think or believe that NASA doesn’t care about their own cyber security, quite
the contrary, I’m more under the impression from what I was told from their side that
NASA’s security policy strictly forbids them to reply to security vulnerability reports
reported directly to NASA from the outside of the organization. But somehow also
got the impression that they are overwhelmed by bug bounty researchers looking for
easy money that is simply causing too much noise on the wire.

Apparently, NASA’s official software Github account (https://github.com/NASA/)
referenced from https://code.nasa.gov/ and https://software.nasa.gov/ where they
publish NASA’s developed software is not under NASA's bug bounty program, so it’s
complicated to report any vulnerability / security issue discovered in NASA’s software
published on GitHub over the public bug bounty platforms.

It’s not 2009 any more, back then there was no money involved when you directly
contacted vendors (even NASA) about the security issues in their code, it was all
much easier and sometimes (who would guess?) even more friendly in a favour of a
mutual benefit. :)

Thank You!

Thanks to all of my friends who proofread the paper (you know who you are) and
especially thanks to my beloved wife Tanja for the article wordsmith and the style
checking, but also for the support during the lonesome nights while I was working on
this paper/research.

https://github.com/NASA/
https://code.nasa.gov/
https://software.nasa.gov/

Disclosure Timeline:

11/27/2024 - Discovery of vulnerabilities in NASA’s GeoRef, CMR-CSW and
CMR-OpenSearch
11/29/2024 - Reported GeoRef vulnerability to arc-sra-team@mail.nasa.gov and to
Agency-DL-VAMP-VDP@mail.nasa.gov
11/29/2024 - Reported CMR-CSW data leak to
Agency-DL-VAMP-VDP@mail.nasa.gov
11/29/2024 - Reported CMR-OpenSearch data leak to stephen.w.berrick@nasa.gov
11/29/2024 - Postmaster automatic reply that
Agency-DL-VAMP-VDP@mail.nasa.gov is an email for internal communications
12/02/2024 - Reported GeoRef vulnerability over an email to soc@nasa.gov
12/02/2024 - Reported CMR-CSW vulnerability over an email to soc@nasa.gov
12/02/2024 - Reported CMR-OpenSearch vulnerability over an email to
soc@nasa.gov
12/03/2024 - Sent an update email to soc@nasa.gov
12/04/2024 - Called NASA’s SOC telephone number (877-627-2732), they said that
they can’t tell me much
12/17/2024 - Sent an email to soc@nasa.gov
01/13/2025 - Called again NASA’s SOC phone number (877-627-2732), they asked
me if I’m NASA’s employee and only got a response that they don’t respond to
reported security vulnerabilities/issues.
01/13/2025 - Sent an update email to soc@nasa.gov
01/17/2025 - Reported Buffer Overflows in multiple NASA’s software to
soc@nasa.gov -
05/27/2025 - Public disclosure

mailto:arc-sra-team@mail.nasa.gov
mailto:Agency-DL-VAMP-VDP@mail.nasa.gov
mailto:Agency-DL-VAMP-VDP@mail.nasa.gov
mailto:stephen.w.berrick@nasa.gov
mailto:Agency-DL-VAMP-VDP@mail.nasa.gov
mailto:soc@nasa.gov
mailto:soc@nasa.gov
mailto:soc@nasa.gov
mailto:soc@nasa.gov
mailto:soc@nasa.gov
mailto:soc@nasa.gov
mailto:soc@nasa.gov

	NASA’s Software Security Vulnerabilities Found For Fun, Not Profit
	How to discover more than dozen severe and critical security vulnerabilities in various NASA’s in house developed software in only 4 hours
	Leon Juranic (leon.juranic@threatleap.com)

	Long time ago in a galaxy far, far away…
	In The Meantime
	
	Now, let’s get back to NASA
	NASA’s GeoRef Software - Reflected Cross Site Scripting Security Vulnerability
	NASA’s CMR-OpenSearch - “Secrets Leak” Software Security Issue
	NASA’s CMR-CSW Software - “Secrets Leak” Security Issue
	NASA’s Portable Environment for Quick Image Processing (QuIP) Remote Buffer Overflow
	NASA’s Vehicle Sketch Pad (VSP) Remote Buffer Overflow
	
	NASA’s Regional Hydrologic Extremes Assessment System (RHEAS) Software Framework Remote Buffer Overflow
	More Buffer Overflow Vulnerabilities in NASA’s Software
	Software: Omnias Stack Based Buffer Overflow
	Software: Refine Stack Based Buffer Overflows
	Software: CFDTools Stack Based Buffer Overflow
	Software: Knife Stack Based Buffer Overflow

	Conclusion
	Thank You!

	Disclosure Timeline:

